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Abstract | Food intake and energy expenditure are tightly regulated by the brain, in a homeostatic process 
that integrates diverse hormonal, neuronal and metabolic signals. The gastrointestinal tract is an important 
source of such signals, which include several hormones released by specialized enteroendocrine cells. These 
hormones exert powerful effects on appetite and energy expenditure. This Review addresses the physiological 
roles of peptide YY, pancreatic polypeptide, islet amyloid polypeptide, glucagon‑like peptide 1, glucagon, 
oxyntomodulin, cholecystokinin and ghrelin and discusses their potential as targets for the development of 
novel treatments for obesity.
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Introduction
Energy intake and expenditure are regulated by a homeo-
static mechanism; in healthy adults, body weight thus 
remains relatively constant over decades despite large 
short-term fluctuations in food intake and physical 
activity. This remarkable feat is achieved by a complex 
neuronal network, centered on the hypothalamus and 
brainstem (Figure 1). Afferent signals to this homeostatic 
network are neuronal, metabolic and hormonal in nature 
and arise both from the periphery and the central nervous 
system (CNS). These signals convey information on a 
multitude of parameters, including the quantity of energy 
stored in adipose tissue; the presence of inflammatory or 
toxic substances in the blood; the volume, composition 
and satiating effect of nutrients in the gastro intestinal 
tract; and the appearance, aroma and taste of potential 
foodstuffs. This information is integrated with neuronal 
contributions from pleasure and reward pathways, as 
well as higher cognitive functions, such as an awareness 
of social context. Efferent signals from the homeostatic 
network are directed to the neuro endocrine axes, auto-
nomic nervous system and diverse regions of the CNS. 
The result is a finely controlled, continuous adaptation to, 
and alteration of, a fluctuating energy requirement.

Neuronal control of energy homeostasis
Meal-related hormonal and neuronal signals from the 
gastrointestinal tract are received via the blood in the area 
postrema and through vagal afferent fibers in the nucleus 
of the tractus solitarius (Figure 1). These sensory inputs 
are transmitted via the parabrachial nucleus and ventral 
tegmental area to other centers, including the amygdala 

and nucleus accumbens, where reward is assigned to 
them in a process involving dopaminergic, opioid and 
5-hydroxytryptamine signaling. Inputs from these path-
ways are integrated with circulating signals of nutritional 
state, such as fatty acids and the adipocyte hormone 
leptin, which are detected in the arcuate nucleus via the 
median eminence.

Leptin-responsive neurons are also present in the 
brain  stem and ventromedial nucleus. Within the arcuate  
nucleus, the activity of neurons that express pro-
opiomelanocortin (POMC) is stimulated by leptin, 
while that of neurons expressing neuropeptide Y (NPY) 
is in hibited. Axons from both types of neurons project in 
parallel to the para ventricular nucleus and lateral hypo-
thalamic area. Release of α-melanocyte-stimulating 
hormone by POMC-expressing neurons leads to acti-
vation of the melanocortin receptor 4 (MC4R), which 
results in the reduction of food intake and an increased 
energy expenditure. By contrast, release of NPY activates 
Y1 and Y5 receptors, which increases food intake and 
reduces energy expenditure. NPY-expressing neurons 
also release agouti-related peptide, an endo genous 
antago nist of the MC4R. The response to this dual inner-
vation within the para ventricular nucleus leads to modu-
lation of energy expenditure via the thyroid and adrenal 
axes and the sympathetic nervous system.

Within the lateral hypothalamic area, second order 
neurons that express melanin-concentrating hormone 
and orexins are of importance in modulating food intake. 
In the ventromedial nucleus, neurons that express brain-
derived neurotrophic factor regulate palatable food 
ingestion via interactions with the amygdala and nucleus 
accumbens. Motivation and cognition influence energy 
homeostasis and are influenced in turn by nutritional 
status, via reciprocal projections between the orbito-
frontal cortex, the amygdala, nucleus accumbens, dorsal 
striatum and other parts of the limbic system.
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Current treatments for obesity
The complexity of the neuronal network that controls 
energy balance has provided a wealth of CNS drug 
develop ment targets for novel obesity treatments (Table 1). 
The number of different targets pursued is illustrative, 
however, of the challenge of manipulating a homeostatic 
mechanism with so many layers of apparent redundancy. 
The vast number of targets also reflects the difficulty of 
targeting neurotransmitters with diverse roles in other 
CNS pathways.

Following the withdrawal of marketing authorizations 
for sibutramine and rimonabant, the only drug currently 
available in Europe for the treatment of obesity is the 
pancreatic lipase inhibitor orlistat. When administered 
in randomized, controlled trials in conjunction with a 
reduced calorie diet, orlistat causes modest weight loss;1 
however, its use is limited by the unpleasant adverse 
effect of anal leakage of oily feces. Furthermore, in many 
patients, the magnitude of weight loss achieved is insuf-
ficient to ameliorate the debilitating and life-threatening 
complications of obesity.

Lessons from bariatric surgery
Among currently available obesity treatments, bariatric 
surgery alone routinely achieves substantial, perma-
nent weight loss and a reduction in overall mortality, 
despite the perioperative risk of death from, for example, 
hemor rhage, sepsis or pulmonary embolism.2,3 Several 
procedures are efficacious in reducing body weight, and 
the field is continuing to develop (Figure 2). Gastric 
banding, one of the most frequently performed proce-
dures, reduces food intake by limiting the quantity that 
can be ingested comfortably and by increasing the sati-
ating effect of food.4 However, compared with gastric 
banding, appetite and weight loss are usually reduced 
more efficiently with procedures that incorporate an 
element of gastrointestinal bypass, such as Roux-en-Y 
gastric bypass (RYGB).2,3,5 Furthermore, coexistent type 2 
diabetes mellitus is ameliorated much more rapidly by 
RYGB than by gastric banding, even before substantial 
weight loss has occurred.6 These differences in outcome 
are thought to arise mainly from altered secretion of 
several gut hormones that occurs after RYGB but not 
after gastric banding.7,8

Dietary restriction and loss of body weight are rou-
tinely accompanied by a rapid fall in plasma leptin levels 
and, consequently, by an increase in hunger.9 By contrast, 
appetite is reduced markedly after RYGB, despite sub-
stantial weight loss and reduced plasma leptin concentra-
tions.5 This phenomenon is illustrative of the profound 
importance of afferent signals from bowels to brain for 
the regulation of energy homeostasis. The nature of some 
of these signals is discussed below.

Gut hormones
Peptide yy
Peptide YY (PYY) is an amidated peptide originally iso-
lated from porcine intestine by Tatemoto and Mutt10 at 
the Karolinska Institute (Stockholm, Sweden), and named 
by them after the tyrosine (Y) residues at each end of its 

Key points

The history of pharmacological therapies for obesity is characterized principally  ■
by inefficacy and marked adverse effects

Robust weight loss can be achieved through bariatric surgery, with associated  ■
changes in the intestinal hormonal response to calorie intake

Gut hormones such as glucagon‑like peptide 1, peptide YY, pancreatic  ■
polypeptide, glucagon and islet amyloid polypeptide act in an integrated fashion 
to modulate appetite and energy expenditure

A potential therapy for obesity might be based on the concept of  ■
pharmacological mimicry of the hormonal milieu after bariatric surgery

Development of such therapies will, however, require improved understanding  ■
of the interactions between hormones and of their integration with other 
signals of nutritional status

36-amino acid chain. PYY shares considerable sequence 
homology and a common tertiary structure, the PP-fold, 
with another gut hormone, pancreatic poly peptide, and 
with the neurotransmitter NPY. PYY(1–36) is an agonist 
at three of the mammalian NPY receptors, namely Y1, 
Y2 and Y5. However, its N-terminus is readily truncated 
by dipeptidyl peptidase 4 (DPP4),11 which results in the 
major postprandial circulating form PYY(3–36).12 In con-
trast to the relatively non-selective actions of PYY(1–36), 
PYY(3–36) is a selective Y2 receptor agonist.13

PYY is synthesized by mucosal enteroendocrine 
L cells, located predominantly in the distal gut (Table 2).14 
Release of PYY occurs following a meal, in proportion 
to energy intake, with maximal levels achieved 1–2 h 
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Figure 1 | A complex neuronal network within the CNS controls energy homeostasis. 
Abbreviations: AMY, amygdala; AP, area postrema; ARC, arcuate nucleus; LHA, lateral 
hypothalamic area; NAc, nucleus accumbens; NTS, nucleus of the tractus solitarius; 
PBN, parabrachial nucleus; PvN, paraventricular nucleus; vMN, ventromedial 
nucleus; vTA, ventral tegmental area.
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after meal consumption.14 Both fasting and postprandial 
plasma PYY concentrations are increased after RYGB but 
not after gastric banding.8 Stimulation of endogenous 
PYY secretion by nutrients is a complex process, which 
is enhanced by intraluminal lipid hydrolysis, as well as 
by a high-protein diet.15–17

When intravenously infused to achieve plasma concen-
trations approximately equivalent to postprandial levels, 
PYY(1–36) inhibits gastric acid secretion, gastric empty-
ing, mouth-to-cecum transit time and cephalic phase 
gallbladder contraction in humans.18–20 The anorectic 
effect of PYY, however, is mediated not by the relatively 
non-selective PYY(1–36) but by the selective Y2 receptor 
agonist PYY(3–36), via interactions with both the vagus 
nerve and the hypothalamus. In the vagus nerve, affer-
ent discharges are stimulated by PYY(3–36),21 whereas, 
in the arcuate nucleus, PYY(3–36) acts at pre synaptic 
Y2 receptors to inhibit NPY neurons and disinhibit 
POMC neurons.22 These effects translate into reduced 
body weight in animal models of obesity with repeated 
ad ministration of the peptide.23,24

In humans, intravenous infusion of PYY(3–36) 
reduces food intake in both lean adults and those with 
obesity.25 The range of plasma PYY concentration 
associ ated with this anorectic effect is relatively narrow, 

and nausea occurs when it is exceeded.26–28 Nausea and 
vomiting have occurred in association with a rapid rise 
in plasma PYY concentration in clinical trials of both 
intranasal and oral preparations of PYY(3–36).29,30 This 
acute dose-limiting adverse effect might explain the 
failure of chronic dosing with intranasal PYY(3–36) to 
reduce body weight in study participants with obesity.29 
How ever, sensitivity to the anorectic effect of PYY(3–36)  
is as strong in humans with obesity as it is in lean indivi-
duals.25 Furthermore, the incidence of nausea after 
RYGB gradually diminishes with time and weight loss 
is most prominent in patients who exhibit the greatest 
postprandial excursions of PYY and other L-cell hor-
mones.31 Therefore, the Y2 receptor will probably remain 
a focus of antiobesity therapy development.

Pancreatic polypeptide
Pancreatic polypeptide is an amidated 36-amino acid 
pep tide that is secreted postprandially under vagal 
control by pancreatic islet PP cells (Table 2).32–34 This 
hormone is a high-affinity agonist of the Y4 receptor 
and also exhibits modest agonist activity towards the Y5 
receptor.35 Transgenic overexpression of pancreatic poly-
peptide in murine pancreatic islets reduces food intake, 
while administration of anti-pancreatic polypeptide 

Table 1 | Selected obesity drug development targets in the CNS

Target Mode of action Comments

Antiepileptic Unknown Zonisamide and bupropion combination in phase II clinical trials
Topiramate and phentermine combination completed phase III clinical trials

Cannabinoid receptor 1 Antagonist Marketing authorization for rimonabant withdrawn (psychological  
adverse effects)

Ciliary neurotrophic  
factor receptor

Agonist Peptide analog inactivated by antidrug antibodies in phase II clinical trials

Dopamine, 
5‑hydroxytryptamine  
and norepinephrine

Reuptake inhibition Tesofensine in phase II and phase III clinical trials

Dopamine and 
norepinephrine

Reuptake inhibition Bupropion currently marketed as aid to smoking cessation

5‑hydroxytryptamine Non‑selective agonist Fenfluramine, dexfenfluramine withdrawn (5‑hydroxytryptamine receptor 
subtype 2b‑mediated cardiac valvulopathy and pulmonary hypertension)

5‑hydroxytryptamine and 
norepinephrine

Reuptake inhibition Marketing authorization for sibutramine suspended in Europe 
(cardiovascular adverse effects)

5‑hydroxytryptamine 
receptor subtype 2c

Agonist Lorcaserin completed phase III clinical trials

Leptin receptor Agonist Recombinant leptin and pramlintide combination in phase II clinical trials

Melanin‑concentrating 
hormone receptor 1

Antagonist Orally available compounds cause weight loss in animal models of obesity

Melanocortin‑4 receptor Agonist Orally available MK‑0493 inadequate effect with dose‑limiting nausea  
in phase II clinical trials

Opioid receptor Antagonist Bupropion and naltrexone combination completed phase III clinical trials

Orexin receptor 1 Antagonist In development for treatment of insomnia

Sympathomimetic Agonist Phentermine not licensed in Europe (cardiovascular adverse effects)

Y1 receptor Antagonist In preclinical development

Y2 receptor Agonist Intranasal PYY3–36 inadequate effect with dose‑limiting nausea in phase II 
clinical trials

Y4 receptor Agonist various drugs in phase I and phase II clinical trials

Y5 receptor Antagonist Orally available MK‑0557 inadequate effect in phase III clinical trial
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antiserum abolishes this effect.36 Peripherally admini-
stered pancreatic polypeptide acutely reduces food 
intake and gastric emptying in mice, whereas repeated 

administration leads to reductions in body weight gain 
and energy expenditure.37 These changes are associated 
with reduced expression of NPY and orexin mRNA in the 
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Figure 2 | Comparison of bariatric surgical procedures. Adjustable gastric banding is usually performed laparoscopically. A 
rigid ring that incorporates a fluid‑filled reservoir is positioned around the upper stomach, which restricts gastric volume and 
outflow. This procedure has replaced vertical‑banded gastroplasty, in which a small gastric pouch is formed with staples  
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hypothalamus.37 However, the effects of exogenous pan-
creatic polypeptide on food intake and gastric motili ty 
are dependent on intact vagal signaling.37,38

In lean humans, intravenous infusion of pancreatic 
polypeptide, in amounts sufficient to achieve plasma 
concentrations similar to normal postprandial levels, 
leads to delayed gastric emptying and reduced acute 
food intake.39,40 Similar findings have been made in 
indivi duals with obesity secondary to Prader–Willi syn-
drome.41 No data have yet been published on the effect 
of pancreatic polypeptide on energy expenditure in 
humans. Nevertheless, the anorectic effect of pancreatic 
polypeptide suggests that Y4 receptor agonists may be 
useful in the treatment of obesity.

islet amyloid polypeptide
Islet amyloid polypeptide (IAPP, also known as amylin) 
is an amidated 37-amino acid peptide, containing one 
intrachain disulfide bond, that was first isolated and 
sequenced from diabetic human pancreas.42 IAPP is co-
secreted with insulin from pancreatic β cells and is the 
endogenous ligand for a receptor complex comprising 
the calcitonin G-protein-coupled receptor in associ-
ation with receptor activity-modifying protein 3.43 The 
principal actions of IAPP are the retardation of gastric 
emptying and the inhibition of meal-stimulated gluca-
gon secretion, thus contributing to the control of blood 
glucose in an insulin-sparing fashion.44–47 However, IAPP 
also has an acute anorectic effect in rodents, mediated via 
the area postrema.48 Rodent studies also provide evidence 
of an anorectic synergy when IAPP is coadministered 
with either PYY(3-36) or cholecystokinin (CCK).49,50

Pramlintide, an analog of IAPP, is licensed in the uS, 
but not in Europe, as an adjunct to insulin treatment 
for individuals with type 1 and type 2 diabetes mel-
litus. Pramlintide therapy improves glycemic control, 
particularly in the postprandial state, and reduces 
exogenous insulin requirements.51 Nausea is the most 

frequent adverse effect associated with the use of this 
drug. A modest reduction in body weight occurs during 
chronic treatment—an effect which can be accentuated 
in humans by coadministration with leptin.52,53 No pub-
lished data in humans are available regarding its synergy 
with either PYY(3–36) or CCK.

glucagon-like peptide 1
A cleavage product of the proglucagon precursor 
(Figure 3), glucagon-like peptide 1 (GLP-1) functions 
both as a brainstem neurotransmitter and as a hormone, 
with GLP-1(7–36) amide as its major circulating form.54 
GLP-1 is released into the circulation following a meal, in 
proportion to energy intake, by enteroendocrine L cells.55,56 
Release is stimulated by enteric neuronal signals, as well as 
by direct interactions between gut luminal contents and 
receptors expressed on the luminal surface of L cells, such 
as G-protein-coupled receptor 119 (GPR119).57,58 Both 
fasting and postprandial concentrations of GLP-1 are 
increased after RYGB but not after gastric banding.8

GLP-1 functions as an incretin, that is, as a physio-
logical, glucose-dependent, insulin secretagogue, the 
action of which is to potentiate postprandial insulin 
release.59 It also inhibits glucagon secretion, delays 
gastric emptying60,61 and inhibits food intake.62 Chronic 
sub cutaneous infusion of GLP-1 in patients with type 2 
diabetes mellitus results in weight loss and improved gly-
cemic control.63 However, native sequence GLP-1 is not 
suitable for use as a drug owing to its rapid inactivation 
by DPP4.64

Several GLP-1 receptor (GLP1R) agonist peptide drugs 
(so-called ‘incretin mimetics’) are licensed, or in phase II 
and phase III clinical development, for subcutaneous 
injection in the treatment of type 2 diabetes mellitus. 
Exenatide is the pharmaceutical name for exendin-4, 
a DPP4-resistant peptide originally isolated from the 
saliva of Heloderma suspectum, the Gila monster lizard.65 
Liraglutide is an analog of GLP-1(7–37) with an acylated 
side chain that binds albumin in the circulation, thereby 
retarding clearance of the drug.66 As well as improving 
glycemic control, this class of drug also reduces body 
weight.67–69 Nausea is the most frequent adverse effect, 
but the difference in the extent of weight loss of patients 
who have and those who have not experienced nausea 
is minor.70

In addition to parenteral incretin mimetics, oral, 
nonpeptide GLP1R agonists have been developed,71 as 
well as a peptide analog of GLP-1, formulated for oral 
administra tion, which is being tested in phase I clini-
cal trials.72 An alternative to the development of GLP1R 
agonists is to increase the concentration of endo-
genous GLP-1 in the circulation, either by inhibiting its 
de gradation or by stimulating its release. The former is 
accomplished by DPP4 inhibitors, such as sitagliptin and 
vildagliptin, which are currently licensed for the treat-
ment of type 2 diabetes mellitus. However, DPP4 inhibi-
tors do not cause substantial weight loss, potentially 
because DPP4 modifies a multitude of peptides with 
diverse roles. Amongst those peptides is PYY(1–36), the 
N-terminus of which is truncated by DPP4 to produce 

Table 2 | Types of enteroendocrine cells and their secreted products

Cell type Secreted hormone location

α cells Glucagon Pancreas (islets of Langerhans)

β cells Insulin, islet amyloid 
polypeptide

Pancreas (islets of Langerhans)

PP cells Pancreatic polypeptide Pancreas (islets of Langerhans)

δ cells (D cells) Somatostatin Pancreas (islets of Langerhans)

G cells Gastrin Stomach
Occasionally in the pancreas

X/A‑like cells Ghrelin, nesfatin‑1 Stomach
Occasionally in the small intestine

GIP cells (K cells) GIP, xenin Small intestine

S cells Secretin Small intestine

I cells (CCK cells) Cholecystokinin Small intestine

N cells Neurotensin Small intestine

L cells PYY, GLP‑1, GLP‑2, 
oxyntomodulin

Small and large intestine

Abbreviations: CCK, cholecystokinin; GIP, gastric inhibitory polypeptide; GLP, glucagon‑like peptide;  
PYY, peptide YY.
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the anorectic Y2 receptor agonist, PYY(3–36).11 By con-
trast, selective GPR119 agonists, which stimulate release 
of endogenous GLP-1, have exhibited anorectic and 
weight-reducing properties in early preclinical studies.73 
Several pharmaceutical companies are develop ing 
GPR119 agonists as potential treatments for both type 2 
diabetes mellitus and obesity.74

glucagon
Glucagon is a 29-amino acid peptide derived from pro-
glucagon (Figure 3) and secreted by pancreatic islet 
α cells (Table 2). Its principal actions are to stimulate 
hepatic glyco genolysis and gluconeogenesis and, hence, 
to maintain blood glucose concentrations in the physio-
logical range during fasting and exercise. Glucagon is 
also released into the hepatic portal vein at the start of 
meals.75,76 In rodents, a high-protein diet elicits the release 
of glucagon into the hepatic portal vein more efficiently 
than carbohydrates or fat.77 The concentration of gluca-
gon in portal blood is greater than that in the systemic 
circulation, mainly as a result of dilution via the hepatic 
arterial flow, the major site of clearance of glucagon from 
the circulation being the renal capillary bed.78

Peripherally administered glucagon reduces acute food 
intake; in rodents, the most potent effect occurs when the 
hepatic portal vein is infused directly.79 This ano rectic 
effect is dependent on intact signaling by the hepatic 
branch of the vagus.80 In humans, acute food intake is 
reduced when glucagon is injected intramuscularly at a 
dose sufficient to cause hyperglycemia and nausea.81,82 
However, nausea is not required to produce the anorectic 
effect, since low-dose intravenous infusion reduces acute 
food intake without adverse symptoms.83

In addition to altering satiety, glucagon also has ino-
tropic (increased force of heart muscle contraction) and 
chronotropic (increased heart rate) effects that are inde-
pendent of adrenergic-receptor activity.84 Furthermore, 
at pharmacological blood concentrations, and in the 
absence of insulin, it also has lipolytic effects.85 These 
charac teristics potentially increase energy expendi-
ture and thus promote weight loss during chronic 
hyper glucagonemia. As hyperglycemia and glycosuria 
can also develop under the same circumstances, the 
potential role for glucagon receptor (GCGR) agonists 
in treating obesity and dia betes mellitus is uncertain. 
Nevertheless, pre clinical studies suggest that combin-
ing GCGR and GLP1R agonist acti vity in the same mol-
ecule might maximize the effects on food intake and 
energy expenditure while preventing the development 
of hyperglycemia.86,87

Oxyntomodulin
Oxyntomodulin is another cleavage product of pro-
glucagon (Figure 3). Like GLP-1 and PYY, it is released 
rapidly from intestinal L cells after meals (Table 2), in pro-
portion to calorie intake, and its secretion is enhanced by 
RYGB.88–90 The effects of acute administration of oxynto-
modulin in humans include prolongation of gastric 
emptying, inhibition of gastric and pancreatic exocrine 
secretion and reduction of food intake.91–94 In addition, 

repeated subcutaneous administration causes marked 
weight loss in patients with obesity.95 Possibly, weight loss 
occurs not only as a result of reduced food intake but also 
owing to increased energy expenditure.96

The peptide sequence of oxyntomodulin comprises 
the entire 29-amino acid sequence of glucagon with a 
C-terminal octapeptide extension.97 Limited agonist 
activity is retained at the GCGR but the anorectic 
effect of oxyntomodulin is mediated predominantly via 
GLP1R.98,99 As with GLP-1, oxyntomodulin is degraded 
by DPP4 and neprilysin100,101 and rapidly cleared from the 
circulation after subcutaneous injection.95 Nevertheless, 
the effects of oxyntomodulin in humans on food intake, 
energy expenditure and body weight, which are achieved 
without altering glucose homeo stasis,95,96 suggest that 
it is a potentially valuable target for development of  
anti-obesity therapies.

Cholecystokinin
CCK is released postprandially by endocrine I cells 
(Table 2) in the small intestine.102,103 Circulating in 
various cleaved forms of different length (for example, 
CCK-58, CCK-33, CCK-22 and CCK-8) that each 
contain a sulfated heptapeptide C-terminus, CCK is an 
agonist of the cholecystokinin receptor type A (CCK-
AR, also known as CCK1R) on vagal afferent fibers.104 
Its effects include stimula tion of gallbladder contrac-
tion and pancreatic enzyme secretion and retardation 
of gastric emptying.105,106 In addition, the release of 
PYY and GLP-1 after lipid ingestion and the inhibition 
of ghrelin secretion are dependent on signaling via the 
CCK-AR.17,107 As well as having endocrine and possibly 
paracrine effects, CCK-8 is synthesized and released 
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as a neurotransmitter within the CNS, binding to both 
CCK-AR and CCK-BR (CCK2R).108

Sham feeding studies in rats show that infusion of 
CCK induces the behavioral satiety sequence.109 How-
ever, this distinct role in meal termination may not 
translate into regulation of long-term energy intake. 
When CCK is administered chronically to rats by intra-
peritoneal infusion at the start of every meal, reduced 
meal size is rapidly compensated for by increased meal 
frequency.110 The physiological role of CCK seems to 
be similar in humans. Food intake is reduced acutely 
when CCK is administered by intravenous infusion;111 
however, repeated administration of an orally available 
CCK-AR agonist failed to cause weight loss in obese 
human volun teers in a phase II clinical trial.112

In the light of these findings, the place of CCK in the 
regulation of body weight, as opposed to satiety, has 
been in doubt. However, weight loss has been observed 
in rodents during chronic treatment with parenteral 
CCK-AR agonists.113,114 Notably, when rats increase 
meal frequency to compensate for the reduced intake at 
meals during repeated CCK-8 infusions, the size of meals 
nevertheless remains reduced, suggesting that tolerance 
to treatment potentially does not occur.110 Furthermore, 
when CCK is coadministered with leptin in rodents, 
transport of leptin across the blood–brain barrier is 
enhanced, which leads to increased phosphoryla tion 
of signal transducer and activator of transcription 3 
(STAT3) in the arcuate nucleus and increases the loss 
of body weight.115 Anorectic synergy of CCK has also 
been demonstrated in combination with IAPP.50 These 
findings suggest that potential still exists for CCK-based 
antiobesity therapy.

ghrelin
Ghrelin is a 28-amino acid peptide hormone that is acy-
lated by ghrelin O-acyltransferase (GOAT) and secreted 
by endocrine cells in the gastric fundus.116–118 An endo-
genous ligand for the growth hormone secretagogue 
receptor type 1 (GHSR), ghrelin stimulates the release 
of growth hormone from the pituitary gland117 and also 
has an important role in appetite regulation.119 Plasma 
ghrelin concentration peaks preprandially in humans, 
both when meals are delivered at scheduled times120 
and when individuals are allowed to eat at will but are 
deprived of time cues.121 Furthermore, in humans, intra-
venous infusion of ghrelin in lean individuals causes a 
marked increase in appetite and food intake.122 Ghrelin, 
therefore, seems to induce hunger and to function as a 
meal initiator.

A negative correlation exists in humans between fasting 
plasma ghrelin concentration and BMI.123 However, this 
association is not replicated in the postprandial state; 
ghrelin concentration does not change after a test meal 
in patients with obesity, whereas it declines markedly 
in lean individuals.124 Furthermore, healthy indivi duals 
with obesity seem to be more sensitive to the acute orexi-
genic effects of intravenous infusion of ghrelin than lean 
individuals.125 Disruption of ghrelin signaling, either 
by direct interaction with the GHSR or via a reduced  

GOAT-mediated acylation of ghrelin may, therefore, 
prove useful for the treatment of obesity. Conversely, the 
use of GHSR agonists has been advocated as a potential 
treatment for cachexia in patients with terminal dis-
ease.126 Through the ability to stimulate release of growth 
hormone, GHSR agonists could also provide a means of 
reducing frailty in old age.127 Nevertheless, the potential 
for treatment to impair glucose tolerance is of concern, 
particularly in the latter setting.

Conclusions
The importance of signals arising from the gastro-
intestinal tract for the maintenance of energy homeo-
stasis is illustrated by the metabolic changes that occur 
after RYGB. Whereas starvation-induced weight loss is 
accompanied by downregulation of the thyroid axis,128 
this phenomenon does not occur after RYGB.129 Further-
more, despite the fall in plasma leptin concentration 
that accompanies profound weight loss, appetite is per-
manently reduced after RYGB, which allows sustained 
control of body weight in the long term. Increased secre-
tion of gut hormones is potentially important in this 
process, as inhibition of their release leads to increased 
appetite and food intake.31

Recognition of the importance of gut hormones in 
energy homeostasis has led to efforts to harness their 
effects in the treatment of obesity. Nevertheless, while 
food intake can be reduced acutely by administration 
of hormones or their analogs, this approach does not 
always translate into weight loss in humans. One pos-
sible explanation is that a treatment capable of enhanc-
ing mealtime satiety may not necessarily have any effect 
on either long-term food intake or energy expenditure. 
Another explanation is that nausea is a common dose-
limiting adverse effect in humans, because it represents 
one end of the spectrum of satiety, the other end being 
ravenous hunger. By contrast, nausea is absent in some 
animal species and difficult to measure objectively in 
others, which might allow greater doses of hormone to 
be administered in preclinical studies than would be 
tolerated in humans. As nausea probably occurs at peak 
plasma concentrations of the drug, its incidence might 
be minimized by the use of sustained-release formula-
tions. Furthermore, as with bariatric surgery, dietary 
re-education could be important in avoiding nausea, 
as endogenous post prandial hormone release and exo-
genous hormone treatment might have additive sati-
ating and hence potentially nauseating effects. Possibly, 
nausea might represent a specific physiological effect of 
one or more hormones, perhaps as part of the response 
to ingestion of a noxious substance. One might, there-
fore, speculate that an anorectic effect may be achieved, 
without nausea, by coadministration of non-nauseating 
doses of several hormones.

In summary, much is now known of the individual 
effects on food intake of several hormones released by 
the gastrointestinal tract. However, while it is likely 
that these hormones are involved in regulating appetite 
and energy expenditure, the complexity of the entero-
endocrine system is such that many important questions 
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remain unanswered. The challenge will, therefore, be to 
understand not only the physiological roles of indivi-
dual hormones, but also how the multitudes of hor-
monal, neuronal and metabolic inputs to the CNS are 
integrated in a comprehensive model of energy homeo-
stasis. Perhaps only once this goal has been achieved 
will we be able to harness the full potential of the gut 
to fight obesity.
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